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l.    Introduction 

To date,  little work has been done on the problem of developing management 

models for analyzing the pricing policy of a railroad.    There are many reasons 

for this:   One is that in many countries, including the United States,  railroad 

management has little or no freedom in setting its price for a particular ser- 

vice.    Instead,  prices are fixed by a federal regulatory body,   so that the only 

form of competition between railroads is through better schedules, faster 

trains, more direct service,  etc.    Also,  in many countries there is only a 

single railroad and so the need for a competitive model to analyse pricing 

policy vis-a-vis another railroad does not exist.    In such a case, however, the 

railroad is almost certain to be in competition with one or more trucking or 

shipping companies,  so that a competitive model in which the railroad's oppon- 

ent is,  say, a trucker would be very useful in analysing the railroad's price 

structure. 

Another reason why such models have not been employed Is that they appear 

to involve mathematical complexities even for simple cases.    The reason for 

this is two-fold.    First, because the model Involves competition, the notions 

of game theory and constrained games appear to be needed.    Second, and most 

Important, any realistic model must deal with quantities (e. g. , future demand) 

whose values are not known in advance with certainty.    This means that the 

model requires some combination of stochastic or chance-constrained elements 

together with game theoretic elements.    Relatively little work has been done 

on such models.    For a survey of the field,  see refe;*«*»»«-wS       [1],  [2] ,  [3] 

and perhaps cited therein. 

There are, however, countries where railroads do compete directly with 

each other as well as with truckers.    Indeed, under the new transport legisla- 

tion in Canada such competition has become possible as never before.    With 
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govcrnmont subsidies declining and costs increasing in the years ahead,  it has 

become clear that railroads in Canada must do more than just hold their own 

in the competitive struggle for freight traffic.    They must capture a sufficient 

share of the market to secure the revenue needed to remain economically 

self-sufficient in a competitive transportation environment.    As Mr.   N.  R. 

Crump,   President of the Canadian Pacific Railway, has said, 

"This challenge can only be met by providing the 
facilities and equipment desired by our customers, 
by offering a dependable transportation service, and 
by following a pricing policy which leads the customer 
to choose our products in preference to those of our 
competitors... It will be necessary to adopt an aggres- 
sive marketing and pricing policy to realize the poten- 
tial economies which are available.    Our competitors 
may be surprised at what the railways can accomplish 
when the rules of the game are the same    for all players. " 

It is clear from Mr.  Crump's remarks that a game-like competitive model 

may be a worthwhile tool for analysing competition between Canada's rail- 

roads.    However,  in the model developed below, we do not restrict a rail- 

road's competitor to be another railroad.    Instead, we allow the possibility 

that the opponent   may be any other shipping firm, and that the railroad's 

competitor may be a composite one comprised of different firms on some of 

the routes. 

We begin with a detailed description of the assumptions and main mathema- 

tical features of the modeL    We obtain a game-like formulation which in- 

volves each player in a chance-constrained programming problem which is 

partly controlled by the play of his opponent.    In section 3 we show how to 

obtain deterministic equivalents which are convex programming problems 

and therefore amenable to solution by existing methods.    Section 4 introduces 

a simple 3 node example used in later sections for illustration, where we are 

able to derive price and scheduling policies as explicit functions of the oppon- 

ent's prices.    lit section 5 we explore the implications of a welfare economic 
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approach.  and are able to obtain a set of optimal prices which reflect the 

complex joint cost and constraint structure.    The relation of these prices to 

capacity costs and social costs is made apparent.    Sections 6 and 7 consider 

two main notions of optimal play and of equilibriurr.    The first approach is to 

assume ons*s opponent's prices fixed, and to derive a reaction curve for each 

player.    Section 7 suggests several possibilities of a game theoretic approach. 

2.    Assumptions and Description of the K.odcl 

The model we will develop is designed to analyze the competitive pricing 

and scheduling of services provided by a railroad and its competitor^).    We 

will assume that the location of the terminals and tracks of the railroad system 

and    the analogous   facilities of its competitor are given,  so we will not 

initially be concerned with the problem of determining whether to expand 

existing facilities or build new ones.    However,  these questions may be 

approached through devices such as sensitivity analyses of our models. 

In our formulation, we shall find it convenient to distinguish between 

the actual rail or highway network of the firm,  and a descriptive network. 

The latter has the following properties:   that a direct link   exists between 

any two nodes (i. e. ,  origins or destinations) over which some demand occurs, 

and that at least one train covers that link.    Thus,  "descriptive" passengers 

or goods travelling between an origin and a destination on the descriptive 

network never have to change "descriptive" trains, and indeed there are no 

intermediate nodes.    (Of course, the actual route may pass through actual 

intermediate nodes). 

There are several ways in which one might formulate the alternatives in 

carrying out the transportation tasks demanded of the railroad and its com- 

petitor.    One might use a network formulation, assigning to each link a var- 

iable which represents the number of "freight cars" traversing the link.    While 

it is possible to formulate our model in this way (indeed, this is what we have 
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done in the trucker section of our model given below) we have not done so for 

the railroad because of the nature of a railroad's operations and the manner in 

which costs of system operation are incurred.    For example,  trains are not 

normally scheduled to run along a single link; usually they are scheduled 

along a  group of links or a route.   These routes are sometimes circular 

in that the end of the route coincides with the beginning.    Sometimes, too, a 

train is required to return to its point of origin at the end of a work shift (see 

C*]'   [^3 where the problem of optimally allocating train crews to satisfy 

such constraints is discussed in detail).    To put these "route requirements" 

into the link-node format of a network problem would greatly complicate 

the mathematics of the model and, as we shall see, unnecessarily. 

A link-node formulation with variables such as the number of "freight 

cars" assigned to each link causes difficulties since the costs are joint and 

are per train rather than per car or per item transported.    A major element 

in the co3t of moving a train is the cost of paying the crew.    Adding a few 

more rare to the train when they are available costs comparatively little, 

so that a cost in not linear in the number of freight cars.    It is convenient 

therefore to employ variables such as train loads rather than the number of 

freight cars,   since the variable cost is approximately linear in the number 

of train loads shipped.    In fact,  to capture also the notion of a route re- 

ferred to above, we will U:o aa variables (x.) the number of trains of fixed 
J   

size k.  assigned to a particular route j, where each route consists of a 

number of consecutive links    (see [4] ,   [5] ).—'    Although at first sight 

one might conjecture that the number of routes would be hopelessly large, 

this is not the case generally because of crew restrictions and other con- 

Tj It should be noted that possibilities of trains of different sises or type 
on the same actual route j can be handled by introducing additional phony 
"points" between the same routes,  one for each size or type. 
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siderationi involved in a railroad's day to day operations.     Costs are given 

by   c. ,  the cost of operating a train of size   k.   over route j. 

We assume that over each   descriptive network link (r.e) joining node   r 

to node   a   the railroad is faced with competition from at most one other 

shipping firm.    The competitive aspect of the model is embodied in the 

demand structure over each link:   the demand which each firm receives 

depends upon the prices charged by both firms. 

Wo allow for the possibilities that there is no competition over certain 

links and that competition comes from different firms (railroads or truckers) 

over different links. 

Specifically,  let   d        be the demand upon the railroad per time period 

for transportation from node   r   to node   s   ,  measured in terms of persons 

or units of goods.    Then   d       is the sole demand upon the railroad on 
i I 

descriptive link (r, s),-*-1    and we assume  that this demand is distributed 
2 

with mean  u        and variance   a        • where   u        is given by ^rs rs rs        * ' 

(1) u=a-bTT+ßA rs        rs        rs  rs      0rs    rs 

In (1).    TT       and   A        are the prices (per person or per unit-goods) charged r s * s 

by the railroad and its competitor,  respectively,  over link   (r,s);   a       , 

b       and   g       arc given n'-.  negative constants.    We will assume that 

o is known and fixed,  although an interesting extension of the model r s 
2 2 would be to allow   o       to vary with  ir        and   A       .    (For example,    a rs 7 rs rs       ' ^ rs 

might bo large when   it      »A        are nearly equal, and small in the contrary 
F Cf IT B 

case. ) 

The opponent's demand on the same link is similarly given: 

JJ   There may be more than one route serving this link. 
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(I)1 d'      =3«      - b«      A       + g*     it 
TB rs rs     rs     0 rs    rs 

Equations (1) and (1)' embody the assumption that demand on a link is higher,, 

the lower is one's own price on that link and the higher is one's opponent's 

price.    Since our descriptive network provides a separate link for each 

desired journey,   it is not unreasonable to ignore prices on other links.    But 

two points should be noted: 

(a) the actual network would no doubt include feeder links into the 

major nodes, and demand on the major links would be affected by 

prices on the feeder links.    The model will enable us to evaluate 

demand increases due to improved access facilities. 

(b) Reduction of transport charges on one link might enable manufac- 

turers to realize economies of scale and find it profitable to 

increase shipments on other routes.    We have ignored this 

possibility; demand distributions along each link are assumed 

independent of prices charged and quantities shipped on other routes. 

We have also assumed the demands as random variables are stochastically 

independent,  though this could be relaxed without difficulty.    We turn now 

to a discussion of the constraints of the model.    The simplest of these 

constraints prescribes uc^cr and lower bounds on the prices that can be 

charged for transportation over each link.    In Canada, for example, a 

railroad cannot charge a below-cost price, thus putting a lower bound 

on IT       .    An upper bound may be eetablished by   the government in order 

to prevent a railroad from charging an excessive price,  though "below-cost" 

and "excessive" are elusive terms and cannot really be defined independently 

of the model.    The railroad itself,  bearing in mind long-run considerations. 



-7- 

might want to maintain or encourage certain demands.    Thus we will assume 

that constants   L      ,  L'      ,  U      «   U'       are prescribed such that one must r s rs r s rs 

have 

(2) L      S TT       S U , ,w        v rs        rs rs for all (r, s) 

and 

(2)' L»     S A       s U1 for all (r. e). rs        rs rs 

W'c allow the possibility that    L        or   L1       may be -ero,  and   U        or   U* c ' rs rs ' rs rs 

may be infinite. 

Since,   in general, demands between nodes arc not the same in both 

directions,   thrrc is no reason to expect that at the optimum   ir       = ir 

But this may be desirable for ease of administration or it may be a 

government restriction.    Our model can evaluate the cost of such a con- 

straint (and similarly with constraints such as:   the price of a journey from 

A to C via B (on the actual network)  should be equal to the sum of the prices 

of journeys from A to B and from B to C; or again, a constant price per 

mile should be charged). —) 

In many instances a railroad must provide a certain minimum frequency 

of service over each link (r, s).    That is,  operating policy or government 

regulation   may require thai the total number of trains scheduled over 

link (r, s)   be at least   R      .    This would give constraints 
x 9 

(3) Z        x.  ä R r ii / ^ .      D        j rs for all (r, s) , 
J rs 

where   D        = (j : route   j   includes link (r, s) as one of its links}. 

ljfc.£[   jFootnote 13,  page 90, where,   in one example,  contrary to the implica- 
tions of traditional analysis,  marginal costs in the empty,  back-hand 
direction are actually higher than in the main direction. 
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In order to maintain a good quality of service on all trains operating 

in or out of node   i,    it may be necesaary to limit the number of trains 

that can use node   i   to be less than or equal to a given number,    M. .     This 

limitation may also be imposed for physical reasons,  since node   i   may 

not have enough facilities to handle more than   h/I.   train loads in a given 

period.    If this constraint is binding in an optimal solution,   sensitivity 

techniques can be used to determine what the increase in profit will be if 

M.   is increased.    In this way we can evaluate the profitability of expanding 

the existing facilities at node   i.    Hence we include the constraint 

(4) £     x. S M. , for all i     , 
JeH.    J l 

where   H. = { j : route   j   includes n ode   i   as one of its nodes}. 

We turn now to a discussion of the chance constraints involved in the 

model.    Since each competing firm sets its schedule and price independently, 

and before the variable demand is known, the railroad cannot guarantee that 

the number of trains it has scheduled to run from node   r   to node   s   will be 

sufficient to meet every possible volume of demand.    The railroad can, 

however, have a policy which states that it wants to set a schedule   which 

will meet demand over link   (r, s)  with at least probability   0       .    A similar 

type of chance constraint wi>Ich required that demand be met with at least a 

specified probability was employed in [7].    There the company involved 

had a rule of "always" meeting customer demand.    However, upon analysis 

of past data to see if "always" meant "with probability one",  it became 

clear that the real meaning of their rule was "as often as we possibly can 

without incurring unbearable cost."   Such a "policy" was mirrored in the 

model by requiring that the chance constraints hold with a suitably high 

level of probability. 



This distinction between a policy and a rule should,  perhaps,   be explained 

further.    If a firm requires that a constraint hold with probability one 

(1. e. ,  if the constraint represents a hard and fast operating rule) and if the 

constraint involves random variables, then the firm must operate so as to 

protect itself against all possible values of the random variables,  no 

matter how extreme they may be or how little probability they have of 

occurring.    On the other hand,  if a chance constraint is employed with 

probability close to but less than one (thus making the operating procedure 

a policy rather than a rule), the firm can still plan to follow the rule except 

in the case of extreme events which are very unlikely to occur.    We will 

employ such chance constraints in the model being discussed here, because 

it seems reasonable that a railroad will want to plan to meet demands with 

high probability,  but will not want to plan to meet demands all the time, 

since unusual events may require emergency (perhaps external) operations 

whose precise character cannot be delineated in advance. 

In our model the chance constraints  on meeting demand with a least a 

specified probability are 

(5) P {    E       k. x. ^ d      }   a ß 1 j eDrBJ   J        rs  J      pr8 
for all (r, s) 

where, to repeat,    k.   is th* fixed capacity of a train on route   j . 

The railroad may wish to ensure a certain minimal level of profit on 

a particular route or set of routes,  or set of links.    Because demand is 

random, this cannot be guaranteed with certainty, but for any such subset 

of routes   3 we may impose a cnance constraint of the form: 

(6) P(      S it      d      -     Z     ex. ä6)>Y 
(r,8)e V^ j e a   J   J 
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wherc    6     is a specified level of profit,    y     is a specified probability 
CC ■ at 

level,    c.   is the cost of operating a train over route   j,    y i» the subset 

of routes and   V   = f (r, s) : link (r, s) is a link on one of the subset of 

routes   or ]   .    In the case where some of the subset   ac overlap with other 

routfts,  a method of revenue allocation must be decided upon.    If the subset 

is defined by links, a cost allocation is necessary.    We shall not pursue 

here the possibility of introducing decentralization by dividing the routes 

into disjoint divisions:   on this,   see [      ].    Note,  however, that if the 

divisions of the opponent are not the same as, or contained within,  those 

of the railroad company,  then we shall see that pricing in one division may 

affect the opponent's price,  and hence one's own revenue,  in another 

division. 

We may consj. !er a variety of different possible objective functions for 

our model.    One might be the expected profit earned over the whole system. 

This can be written as 

(7) E (    E    IT      d      - E c. x, ) 
r,s     rs    rs     j     j    j 

Another might be the probability of earning at least a specified amount   6 

over the whole   system.    This can be expressed a« 

(8) P (    E     ir      d      -   2 c. x. s 6) rs    rs       ;     j    j r, s J 

A third choice of objective function might be the expected difference 

between the revenue earned by the railroad and that earned by its opponent. 

That is 

(9) E (    2    tr      d 
r, s     rs    rs 

Z     Ä       d'      ) 
r,s      r8     r8 
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Still another possibility might be the expectation of the ratio of the railroad's 

revenue to that of its competition. 

In the literature of chance-constrained programming, models whose 

objective function is the expected value of a linear function are called 

E-models, while models whose objective function involves optimising the 

probability of a certain event are called P-models.    Properties of solution! 

to these models have been presented in [8,   9.  10,  11]. 

If the railroad's opponent is another railroad, its own model is analogous 

to that given above.    However,  if the opponent is a trucker the cost and 

operating structure for the truckiiig firm makes the link-node formulation 

preferable to the route formulation.    The chief reasons for this are twofold: 

First, truck schedules are normally given over specific individual links 

and not over a set of links.    Second, and most important, the variable cost 

of transporting a load over a link is approximately linear in the number of 

trucks used.     Thus,   if    c'       is the cost of moving a single truck of fixed 

capacity   k'       along (r, s), and if   y        is the number of trucks which are 

to be allocated to link (r, s), the constraints for the trucker in terms of the 

variables   y       , and   A        , are: 7 rs rs 

(2)« L'     * L      S U' rs        rs rs for all (r, s) 

(3)' y       a R' 7rs rs for all (r, s) 

(4)' E  y     + E y     * KJ y   'rs     t   'st s for all nodes s 

(5)' P (k'     y      id'      ) 2=  8'        ,   for all (r, s) rs 7 rs rs rs 
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(6) (r..)cV     "     "      (r.a)eV' "    "       « ^ 
'Y Of 

There is no difficulty in allowing the links to be divided (disjointly) among 

several opponent firms,  possibly of different type.    To avoid constraint in- 

ter-dcpcndencies,  the node constraints should   be interpreted to refer to 

separate terminals for each opponent.    It would be reasonable to assume 

no collaboration between the firms with regard to price setting,  but there 

might well be indirect interactions via the responses of the railroad. 

3.    The Deterministic Equivalents 

We can summarize the constraints faced by the railroad as 

L      £ w       S U for all (r.s)     , rs        rs        rs 

£        x. 2 R for all (r, s)     , 
jcD      J r8 J        rs 

/1AX E        x. S h/i, for all i    , 
(l0) jeH.     J 

P [ E k.x. ä d     ) ^ ß for all (r, s) [ E k.x. a d     ) 2 ß 
jeD        JJ        r8 r J       rs 

Pf E -n      d      -Ec.x. ^6}2Y for all relevant ot ,      .    ,,      rs    rs    . jj        a TC (r, s) cV_ ) e a   J J 

x. a 0 . 
J 

In (10) we will assume that the   d       are a set of independent normal 

random variables.     The extension of subsequent results to cover situations 

wherein such is not the case is straightforward and is accomplished using 

the same technique which was demonstrated in [8] .    In any case,  since the 

IT        and   x.   are chosen before the random demand is observed,  the problem rs j r 
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1» one involving "zero-order" or constant decision rules in the terminology 

of chance-constrained programming. 

We can use methods similar to those introduced in [8]   in order to 

obtain deterministic constraints equivalent to the chance constraints in 

(10) .     By subtracting the mean   u and dividing by the standard deviation 

a       , we see that rs 

E        x. - u 
d      - w              j cD      J        r8 

P {    E       x. £ d      1   = P [   -^ "    s  1*     ^  . 
j e D      ■' rs rs ■'        rs 

If we let   $   (z) = P (Z 3 z) , where    Z   is a   N(0,1)   random variable,  and 

let   i be the inverse of   $ ,   the first chance constraints in   (10) can then 

be seen to be equivalent to 

(U) L x. + b     TT      äa      +g       L      +a       *'1(0      )      for all (r, s) j       rs    rs        rs     er8     rs        rs rs 

It should be noted that (11) is a linear inequality.    The excess capacity 

necessitated by the uncertain demand is quite apparent. 

To obtain deterministic equivalents for the other chance constraints in 

(10) is somewhat more involved.    Omitting subscripts for clarity, the 

process of normalizing both sides of the inequality in brackets    yields 

P [Z wd^Ecx^P [ZTTd
2-^M   >   ^ECX-ET^      1 

ETT    a E w   a 

where the term on the left in the rightmost brackets is a   N(0,1) random 

variable.     The chance constraints are therefore equivalent to 

ETTU-Ecxi6-[*'l(l-Y)]     ETT2a2 



Now following the technique of [8] and remarking that   i      (l-y)   < 0 

for   Y > T   * we can introduce the "spacer variable"   w to rewrite the 

above relation as 

Eir u-Zcx-    ftäw 

2 -1 2       2   2 
v      * [ «       (1 - Y)]     E«   O 

w   S 0   . 

w is in fact a measure of the allowance necessary for uncertainty.    Replacing 

subscripts, we can write the following as deterministic equivalents for the 

(divisional profit)   chance constraints in (10),  for each  ^: 

(12) Z     IT      (a      -b      tr      +g      A     )-E     ex. ^w 
(rt8)    rs^ rs        rs    rs     »rs     rs      jc^   j    j « 

*l-i*'l(l-yan2    ^^rs^rs   20 

e V 

w     a o a 

Finally, the determini«*'c equivalent for the objective function (7) is 

easily obtained since   IT        and  x.   are zero-order: 7 rs j 

(13) E(i:      n      d      -Ec.x. )=£      IT      U       -Ec.x. ,       v    rs    rs       .     J    J -       .    rs     rs j    j (r, s) j     J    J (r, s) J    J 

E     rr      (a      +g       L       -b     tr     )-Ec.x. 
-    0v    rs     rs     ^rs     rs       rs    rs ;     J    J 

which is quadratic in   rr       and linear in   x.   . M rs j 
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4.    An Example 

In thia section wo «h&Ll introduce a aimple non-stochastic 3-node example 

to give some feeling for the working of thr model.    In particular, we shall 

examine the effects on prices and capacities of changes in demand, as a 

prelude to looking at competitive interactions. 

Suppose we have 3 nodes (i « 1,2,3) with demand along 2 links (1.2) 

and (2,3).    There are 3 routes:   j = 1 : (1, 2),    j = 2 : (2.3)   and 

j = 3: (1,2,3).    Train sises are the same   (k. a k) and costs are such that 

(14) 0 S c. .  c2 < c3   < Cj + c2 

Demand, measured now in train-loads to simplify notation, is given 

deterministically by 

dr. = S.-br.''r. + «r.ir. (r..) = (1.2).  (2.3)     . 

where   b      > 0   . rs 

We shall suppose that the opposing prices   A        are known and fixed, 

so that to maximize profit the   railroad must solve the problem: 

Maximize   IT,, d., + tr-, d-,   -   c, x, - c 12 d12 + ^23 d23  "   Cl Xl " C2 ^ " C3 X3 

(15) subject to x. + x-       ^   d.» 

x       + x id X2 3 23 

1'      2    '      3 
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We have analyzed this example in more detail elsewhere   [      ] .    We give 

here some idea of its properties.    The route and cost structure is such that, 

when service on link 1 exceeds that on link 2   (i. e.    x. + x    > x, + x. )   the 

cost of increasing service is   c. , the cost of increasing service on route L 

V.'hen service on link 1 is lower than on link 2,  service can be increased by 

substituting a train on route    3 for one on route 2, at cost of   c? ~ c~   <  c. . 

If it is optimal to have equal service   (x. -f x. = x. -f x.    , where in fact 

x. = x- = 0)    the sum of the marginal  revenues on the two links will just 

cover the marginal cost   c,   of expanding service on both. 

It can be shown     [     ] that the prices   «.., n..   and the levels of service 

x., x-, x^   are continuous and pieccwise linear functions of the opponent's 

prices   A,, »   by^ *     Further, where demands on the two links are suffi- 

ciently disparate,  prices and levels of service en the two links are independ- 

ent.    However, where similar levels of service are provided on the two 

links, a rise in demand on one link will make it profitable to increase 

service (as well as price) on that link,  thereby reducing marginal costs on 

the other link, because of the joint cost structure.    It is then profitable 

to reduce price on the second link and expand service at the same rate as 

on the first link. 

Generally speaking, price, frequency, output and mode constraints all 

have such "complementary '   effects within certain ranges.    Thus, a 

minimum frequency constraint on one link,  by expanding output on that 

link, may,   through the joint cost structure, induce expansion on another 

link. 

On the other hand, constraints also have "substitution" effects.   A mini- 

mum-frequency constraint,'for example,  induces a shift to routes which 

arc cheap per trainload,  rather than per unit capacity.    Node constraints 
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work in the opposite direction.   These in turn may induce "complementary" 

effects of the first type. 

5.    Welfare Economic» and Kiarginal Cost Pricing 

Suppose that the railroad were government-run,  or regulated with "social 

benefit",  rather than profits, as the objective function to be maximized. 

What price policy would lead to the "correct" provision of services and its 

efficient utilization? Some form of marginal cost pricing would usually be 

thought of as appropriate,  but the complications of joint costs,   resulting 

from the route-cost and the link-demand structures, and of various other 

operating,  managerial and governmental constraints render marginal cost 

an ill-defined concept. 

Elsewhere [      ] ,  we have analyzed our example using Steincr's approach 

[      ] to operating and capacity costs.    However,  his diagrammatic (and 

mathematical) treatment is not adequate for dealing with the full com- 

plexities of our problem.     By formulating the appropriate programming 

model we can derive a set of optimal prices which reflect the marginal 

system cost of the various constraints imposed.    Again, we merely sketch 

out the results here,   referring the reader to [      ] for more details. 

Take as the criterion of social benefit the sum of the areas under the 

demand curves up to the level of output on each link,  less the costs of 

providing these outputs.    A^^ume a non-stochastic demand structure 

d       =a       +g      A      -bw , rs rs      ^rs    rs        rs   rs 

and define   K       as the number of people to be transported on link   (r, s), 
r s 

so that,  by the inverse demand function, price charged on that link is 

a      + g      L      - K rs     Brs    rs rs 
IT rs b rs 



-1b- 

Tho area under the demand curve up to   K        is given by 

K K 
ra / j. »      A rs   , . (a + g A - —5— ) b re     **r«     r« 2 rs 

Assuming the opponent's prices A        constant,  and ignoring for the moment 

all further constraints, the problem is to 

K K 
(16) max £ b15   < ar„ + «r- Ar.   ' "f5 > " ^ ci xi K     .x (r.s)      brs rs        r.     rs 2 j    j 

rs     rs     '       ' J 

subject to S     x.     2   K 
j € D        J r8 J rs 

x.     i   0 
J 

Using Kuhn-Tucker conditions for optimality we can show that (as we 

might expect from the formulation) price on link   (r, s)   is precisely equal 

to the marginal cost of increasing capacity on that link.     In the unconstrained 

case,  revenues just cover costs.    Further constraints,  as in (10),  can be 

introduced without difficulty.    Now,  price on any link is set equal to the 

marginal system cost of expanding capacity on that link.    By this we mean 

not just the cost of running another train but if, for example,  a node con- 

straint were binding,  then the cost in terms of consumer benefits of 

restricting other routes using the critical node.    We can thereby make an 

assessment of the cost to one set of consumers (within the model) of 

(e. g. ) governmental constraints designed to protect the interests of another 

set of consumers. 
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6.    Notion» of Optimal Competitive Action 

The equations and inequalities we have derived as deterministic 

equivalents for each firm's constraints describe the joint ranges of 

prices and scheduling alternatives available to the tvo competitors.    These 

ranges are joint since the  price variables of a firm appear in the con- 

straints of its competitor.    For ease of reference these constraints are 

reproduced below: 

Pailroad Constraints 

L       5 n       s   u rs rs rs   , 

Ex*   R        . 
j cD J rs 1        rs 

E x. 5   M.     , 
j e H.        J 

for all (r, s) 

for all (r, s) 

for all i 

E k. x. -t-bn 2a      +g      A      +o       «"^ 0     )    for all (r, s) .       D      j    j rs   rs rs     Brs    rs rs        x ^rs' x 

^   '      rs 

E             0      (a      +g      A       -bn -Ec.x. .       .             rs     rs     erB     rs        rs   rs j    j (r, s) c v j € a  ^   ^ or 

6     * w 
a        or 

w2   2 0 
Of 

x      2 0 
J 

and 

Competitor Constraints 

rs rs rs for all (r, s) 

(IB) 
y 2 R« 7rs rs for all (r, s) 

E y    + E v s M* 'rs     , 'st a r t 
for all s 
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k«    y      + b«     A i   «•      + g«      D       + a'      t'1 iß'  )     for all (r, 0) 

y 2 0 

2 &      (a'      - b»     Ä      + g«    n      )-! c'    y      2 6«   + w' .       v       ,     rs ^    rs r«   rs     B rs  rs  ',       v      ,    rs'rs        a        a (r, ■) ev'^ (r, 8)e v1^ 

(r#«) € v'^ 

for all relevant a. 
w     2 0 

Of 

It is important to emphasize that the above conditions do not delineate 

independent constraint sets or  regions of alternatives.    Rather, the 

actions and decisions of the two firms are intertwined in an essential way. 

The feasibility or desirability of any set of prices or any scheduling 

pattern for one party cannot be evaluated by reference to only one o». (17) 

or (18).    Indeed, the interrelations require that each firm evaluate its 

decisions in terms which involve the competitor's decisions as well.    These 

interconnections and interdependencies occur also in the objectives or 

payoffs of the competitors,  several possibilities for which we describe in 

(7),   (8) and (9).    This type of intertwining already takes our model out of 

the classes which have thus far been analyzed in the theory of games.— 

In this and the next section we mention two main approaches to the 

questions of optimal play and equilibrium solutions.    The next section 

considers the possibilities of a game theoretic formulation.    The approach 

of this section is familiar in the economic literature (for a discussion 

see [       ] ):   that of reaction curves representing the optimal decision for 

each firm on the assumption that the opponent's price is known and fixed. 

Consider the constraint set (17) together with the objective function 

fl  
—'  But see [      ] for the "Advertising Demand-Capture Games" introduced 
by Charnes and Cooper. 
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(19)     M*x    E       n      (a      +g      L      -b      n      )-Ec.x. .       x    ra      TB     örs    r»        r«     rs j    j 

where     a       +c       A       -b      n      =ü      =Ed rs        rs    TB        rs    rs        rs rs 

Now,  for the opponent's prices   Ä        held fixed,  under very mild conditions 

the set of prices    FI        and activities   x.    satisfying (17) is a convex set 

and the (quadratic) objective function (19) is a concave function of the    n r s 

It is apparent that the conditions   Y    > T   tOT all   ^  (i* e'   niore than a 50-50 

chance of satisfying the requirement is specified) and   b      2 0   (i. e.   increas- r s 

ing own price docs not increase own demand)   for all (r, a) will suffice, 
2 

since the latter ensures that     - £    b    11      is concave as a function of   11 .       .   rs   rs rs (r.s) 

and the former   (together with  w   ä 0)   restricts   w     and   ü       to lie in 

one nappe of an elliptic hypcrboloid.    Hence the problem of   maximizing (19) 

subject to the constraint set (17) with the     A held fixed is therefore 

under these assumptions a convex programming problem and as such yields 

theoretically and computationally to a variety of modern methods.     Likewise, 

the opponent's problem is convex for fixed   0       . 

In principle,  then, we can build up an optimal decision vector,   or 

reaction function,    by sensitivity analysis on the opponent's price vector. 

An equilibrium solution to the whole problem is a pair of price (and output) 

vectors such that unilateral departure by either firm is not advantageous 

to that firm.    Further considerations of interest are:   whether or not the 

equilibrium is unique, and whether it is stable,   i. e. ,  from any pair of 

price vectors the sequence of optimal reactions leads to the equilibrium 

point.    Stability may be local or global.   We shall not consider here the 

conditions on the general problem which ensure the existence of equilibria, 

but we might mention that in the example introduced earlier,  a stable 
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equilibrium exists,  but is not necessarily unique. 

The above notion of equilibrium via reaction curves has been criti- 

cized on certain grounds: 

". . .ultimately they prove to be 'right' for the wrong reasons. 
Each assumes that his rival follows a policy of fixed output 
while in reality each follows a policy of adjusting his own out- 
put to the requirement of profit maximization,   on the assumption 
that the other follows a policy of fixed output.     But,  if,  on this 
incorrect assumption,  they both have actually adjusted their 
output to the simultaneous output of the other, then (from there on) 
the assumption they make with respect to one another is 'quasi- 
correct', as we might say.    It has become true that the other 
producer goes on producing a fixed output, although the reason 
is not  (as is mutually assumed) that he follows a policy of pro- 
ducing a fixed output disregarding his rival's behavior.    This is       . ■ 
what we meant by saying that they are right for the wrong reason. "—' 

"... that firms should assume of one another that the other follows 
a policy of fixed output is conceivable,  but on the way to the 
Cournot equilibrium* they would necessarily realize that their 
assumptions were incorrect and they would change their assump- 
tions.    This would,  of course,  destroy the validity of the Cournot 
reaction functions and of any analysis based on them.    Moreover, 
such approaches to the equilibrium--during which the Cournot 
assumptions concerning rival behavior are patently incorrect--would 
have to take place more or less 'all the time' because,  in con- 
sequence of shifting demand and cost functions in the actual world, 
no single equilibrium position would stay established for long. " £1 

The logical objections can be overcome if we assume a leader- 

follower modvil, where one firm (the leader) can assume that the opponent 

(the follower) will keep to his reaction curve, then the first firm will find 

it optimal to select a price and output vector which will maximize his 

profits when taking into account what the second firm's reaction will be. 

This might be appropriate in the following circumstance:   a competitive 

trucking industry wherein each firm would have to take market conditions 

as given,  in particular the railroad's prices.    The railroad could assume 

a more or less predictable reaction from the competitive trucking 

—'   Fellner,  W. ,  Competition Among the Few, Augustus M.   Kelley, N. Y, 
1965,  p.   58. 

2 I —'   ibid, p. 65 * That is, on the way to the intersection point,  starting 
from any section of the graph. 
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industry,  and set its own prices accordingly. 

The actual reaction functions derived from the initial problem need 

have no simple form.    Examination of the example suggests that price 

on any link would   be a non-decreasing function of the opponent's price 

on that link, and, within certain ranges,  a decreasing function of price 

on another link. 

Suppose the firm was able to locally approximate the opponent's 

reaction by a linear relation 

A       = p       + q      IT , rs     "rs      nrs    rs 

so that 1        s(a       + g     P     ) - (b      -g       q)n       =a       -blT rs      x  rs     ^rs^rs rs     6rs nr8'    rs        rs       rs  n 

Omitting constraints,  the problem now reduces to essentially 

(20) 

Max  EH      {S      - b      n     ) - Ecx. rs      rs        rs     rs i j rs J •' 

s. t.     Z      x. 2 S      - b    n ,     -.       i        rs        rs  rs 1 e D      J 3        rs 

Notice that it is separate from the opponent's problem, and that it remains 

a convex programming problem both in this and the stochastic case. 

Nevertheless,  the leader-follower notion is not entirely satisfactory. 

If both firms attempt to be leaders, the reaction curves cease to be valid. 

They also imply knowledge about the opponent which is not usually avail- 

able except   possibly by experience which would imply an adjustment pro- 

cess over time,    Wc therefore turn to a game-theoretic approach as an 

alternative means of separating the problems of the firm and its opponent. 
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7.    Game Theoretic Approaches 

In the preceding section we have considered two approaches to 

optimal action:   first,  the derivation of a reaction curve for each player, 

giving his optimal prices and schedules for each set of prices that his 

opponent might charge; second,  the choice of optimal prices and schedules 

by one player who can assume the other will obey a known reaction curve. 

But often such information as to the opponent's decisions is not 

available and we turn to a game theoretic approach to this situation of 

uncertainty.    Take as the objective function the familiar concept of minima x 

(or rather maximin) subject to satisfying his own constraint set,   each 

player chooses prices and schedules to maximize his expected profit,  on 

the assumption that,  for any choice, his opponent will choose his own prices 

to minimize the first player's profit. 

Immediately one difficulty arises:   for any choice of   IT        and (x.) , 

the opponent can choose    Ä high enough to violate the first player's 

capacity constraint (5),   (11).    Therefore,  unless we assume known and 

finite bounds on the opponent's prices,  a player cannot make any decision 

which will ensure that his constraint set is satisfied for all possible actions 

of his opponent.    Accordingly,  let us assume that the upper and lower 

bounds on prices (3),   (3)'   are finite ani known to the opponent.    This yields 

the problem 

Max Min 2        TT       (a       + g      L       - b    IT     )- £ C.X. 
TI       «•   .        <: TTI       /        \     r8       rs rs     rs rs   r9        •     J   J 

^rs^j Lrs-^8
SUrs(r'8) 3 

<21) ^ Lrs     £   %s5   Urs 

x.      i 0 
J 

P   f £ k.x. ä d     (TT     .   &     )1 2 0 
r     .    ji        rs    rs       rs  J n 

3    J 

for each L*     S ^      < U* 
rs        rs rs 
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where the other conetraints of (17) have been omitted for conveniencr.     The 

opponent faces an analogous problem. 

The deterministic equivalent of the capacity constraint can be 

written as (11); clearly,   if it is satisfied for the maximum value of   A it 

will be satisfied for all   A       in the range    [ L       ,   U      ] .     Note also that 
rs B      ^    rs r8J 

for any   TT       ,   the choice of   A       = L        by the opponent minimizes the 
r s I* 8 r s 

payoff.    Hence we can write the simpler equivalent to (21) 

Max E-n        (a       +g       L        -b      n     )-£c.x. 
rs      rs      ""rs      rs        rs    rs J    J 

TT      ,x. r, 8 J rs     j J 

(22) s. t. L      ^ IT       s U rs rs rs 

£      kx   +b     IT        2 a       +g      U'    +o      t"1 (0      ) .     _.   J  J        rs   rs rs      ers   rs        rs ^ ra 
J        rs 

x.   2   0 
J 

In (22) we have a deterministic strategic equivalent for (21) which does not 

involve interactions with the opponent's decisions. 

In (21),  and indeed in the preceding analysis,  we have implicitly 

assumed that a possible solution exists.    In particular,  we have assumed 

that the node constraints on   x.    and price constraints on   TT do not prevent 
j rs r 

the player from meeting maximum demand that the opponent can generate (i. e. 

by putting A     -Xj    \B\xt obviously,   the more restrictions upon   any player, 
r a      r s 

and the more latitude the opponent has to set prices,   the less likely is 

this  feasibility to be met. 

A second observation is that a player might find it very unreasonable, 

although feasible,  to provide a schedule catering for the highest price his 

opponent might charge--either because he thinks such a price unlikelv,   or 

because of the high cost of catering for it. 
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In view of these observation«, we might reconsider the capacity 

constraints (5).    They were originally formulated to treat the random 

element of demand; they are perhaps insufficiently flexible to deal with 

the uncertainty surrounding the opponent's price.    An appropriate 

reformulation might therefore be to require den.and be met up to a certain 

specified level    5       ,   e. g. 

(23) E      k.x. > min [?  „.a     ■»• g      U*     -b     ir      +0     f"1 (ß     )] • .    r»       11 u^rs'   rs    6rs    rs        rs  rs rs        ^rs  J 

1      rs 

Another means of relaxing the problem faced by the players (which 

is not incompatible with the previous suggestion) follows from the follow- 

ing observation:    If a player has to satisfy a set of constraints then he 

will not necessarily be able to range over the full set of prices 

(K)   [L     , U     ] open to him.    His feasible set of prices will be even 
r, s) 
further reduced if he has tc meet the inter-twined constraints for a large 

range of his opponent's prices.    Hence,  any player need not be prepared 

to meet any set of prices from      Cx}    [L U1        1 ,  but rather from his V (V/s)       r's     r•,, J 

opponent's smaller feasible set which depends, moreover, upon the range 

of prices which he himself may choose.    This emphasizes th^ essential 

intertwining of the constraint sets.     By introducing suitable notation, 

we can show how three different types of possible regions can be con- 

structed from the intertwined constraint sets,   such that a player need 

not consider the prices chocen by his opponent.-^ 

Denote by S  , S*    the range within which prices must lie,  i. e. 
00 

— 'The constraint set may include chance constraints. 
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(24) S^ 5 [L, U] , S'   -   [L1,   U'] 
o ■■ o 

where    L,   U,   L1,   U     are vectors with as many corriponents as there are 

links (r, s) .    In a more  general formulation the sets   S   •  S     might refer 

to constraints on prices known to the opponent and independent of the 

latter'a actions. 

The sets   S.,s!     (j = 1,2,...)   are then defined inductively: 

(25) S. E   [n feasible for   V & C S*      ] 

s! £ { A feasible for v^cS.   .} j=l,2,... 

Thus,  S     is the set of feasible prices open to the first player 

when the opponent's prices may range over    [ L ,   U    ];   S?   ditto when 

the opponent's prices have to satisfy his constraints for any price that 

the first  player might  set in the range   [L, U] , and so on.    In the present 

model,  the feasibility of prices depends also upon schedules   x. ,  y       , j        rs 

but henceforth the latter are ignored for convenience, without lack of 

generality. 

It follows immediately fron» the definitions that   S.c S   ,  S. c: S     , 1 j -   o      j -    o 

V.   ,   since for feasibility a price must satisfy the bounds 

[ L,   U]    ,   [L*,   U1 ]—' .     Further,    S.c S.,  S' c s!    ,  V- .    since the sets 

S.,   S.     have to be feasible under the widest range of opponent's prices, 

namely   S    , S     .It can further be shown that 7      o        o 

— In eeneral.  S   ,  S'  are not feasible. b o      o 



(26) 

•28- 

S, c S_ c S- c: .,. cc- S , and 

S   n) S0 ^ S . 3 . . .3 S     ,       where o—    2 —   4—        — 

S  c_ S   and aa a special case   S = S .    Analagous statements hold for primed 

sets. 

We can now distinguish the three types of feasible regions re- 

ferred to earlier. 

S.   ®   s! :        S.    is the set of prices open to the first player which ensure 

that his constraint set will be satisfied for any set of prices in the 

opponent's known range [L   ,   U  ] .    Analogously for S.    . 

II S   a S1 :     In fact, the first player's feasible region is   S C S. ,   since the 

opponent   must satisfy further constraints (unknown to the first player, 

and depending upon the latter*s prices).       S   is the largest set available 

to the first player such that the opponent cannot choose a feasible price 

(for him) which violates the first player's constraint set. 

III S   ® S1 (or S   ®   S1 ):    If a player can assume that his opponent will play 

safe by choosing a price in   S1  ,  then he can choose any price   S c S    and 

still be sure of satisfying his constraints.    This concept is analogous to 

that of the leader-follower,   but applying t" simultaneous decisions 

i. e.   without knowledge of the opponent's decision.    Notice that,  for any 

given    TT    in   S   but not in   S   ,  the opponent can choose    A  not in   S    to 

satisfy his own constraints while enruring that his opponent's are 

violated,   but for any unspecified   ir    in   S   and not   Si he runs the risk of 

violating his own constraints unless he chooses   A   in   S   .     The cost of 

constraint violation, which is exterior to the model,   is obviously 

important for the determination of the leader or the follower. 

The first player's problem,  corresponding to the three cases 
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1 

above,  may be represented: 

I Iviax        Min   (     ) 

IT € S 

II Max 

n eS 

UI    Viax 

w eS 

(27) 

(28) 

(29) 

or 

o 

Ivan   (     ) 

ACS:, 

Kiln     (     ) 

ACS' 

Iviax        Mln       (       ) 

n G S       Ac S' 

Where the decisions are not made simultaneously,  the first player's 

problem is to choose   ir = rr      to 1 o 

(30) Iwax        Wiin     (      ) 

TT e S      Ac S'(u  ) 

where   S   (IT   ) =  {feasible    A for   tr = ir   1 o o 

We have   S    3    S (IT   )   o S      ,   but not necessarily   S'CTT   ) c   S_   ,   since 
O "• o      ^ o   —■       £ 

TT      need not be in   S, .    The second player is no longer  faced •with a 
o 1 

programming prrblem.    However,  this line is worth pursuing in the case 

where each player believes the opponent might discover his prices before 

deciding upon his  (the opponent's) own. 

A line for future research is the existence of equilibrium strategies 

within the various feasible regions.    The overall problem is a ncn-zero 

sum chance-constrained game similar to those introduced in [ 2 ] ,   [3] 

but,  as we have pointed out,   the players' strategy sets are intertwined 

and the joint strategy set is not a simple Cartesian product of the 

individual sets. 
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